
 Mobile Testing as a Service 1

Industry Project

Mobile Testing as a Service

By

Apoorva K R
(1225907)

Under the guidance of
Prof. Nachamai

April-2015

Department of Computer Science, Christ University

 Mobile Testing as a Service 2

Department of Computer Science, Christ University

 Mobile Testing as a Service 3

 1. INTRODUCTION

1.1 PROBLEM DESCRIPTION

Mobile Applications are a rapidly developing segment of the global Mobile Market. They

consist of software that runs on a mobile device and performs certain tasks before the

user of the Mobile Phone. They can be downloaded physically through USB / WIFI from

a desktop or can be downloaded by a web server over internet.

The increase in the large-scale on-demand mobile test service requests, mobile test

simulation and traffic loads and virtualization of mobile devices and environments have

raised the importance of mobile app testing in the current market.

Mobile application testing is a process by which application software developed for hand

held mobile devices is tested for its functionality, usability and consistency. Mobile

application testing can be automated or manual type of testing. Mobile applications either

come pre-installed or can be installed from mobile software distribution platforms.

Mobile devices have witnessed a phenomenal growth in the past few years.

There are different platforms present in the industry such as android, apple, windows etc.

The mobile testing will work around two major types of mobile apps namely native apps

and mobile web app. Native apps live on the device and are accessed through icons on

the device home screen. Native apps are installed through an application store (such as

Google Play or Apple’s App Store). They are developed specifically for one platform, and

can take full advantage of all the device features — they can use the camera, the GPS, the

accelerometer, the compass, the list of contacts, and so on.

Web apps are run by a browser and typically written in HTML5. Users first access them

as they would access any web page, they navigate to a special URL and then have the

option of “installing” them on their home screen. Testing these native and mobile web

apps for their quality and performance is vital and the proposed system is aimed to

develop an automated test framework which is compatible with IOS, Android and

windows platform.

Service provided to the mobile application developers to verify their mobile application is

Publishing ready. It also checks for the hybrid apps Cross-platform affinity.

Department of Computer Science, Christ University

 Mobile Testing as a Service 4

There are three important features , namely, Access to native API, AppStore distribution,

runs locally on the device , and it supports offline.

Though mobile testing showcases immense growth, there are certain challenges faced in

mobile application testing:

 Variety of Mobile Devices- Mobile devices differ in screen sizes, input methods

(QWERTY, touch, normal) with different hardware capabilities.

 Diversity in Mobile Platforms/OS- There are different Mobile Operating

Systems in the market. The major ones are Android, IOS, BREW,

BREWMP, Symbian, Windows Phone, and BlackBerry (RIM). Each operating

system has its own limitations. Testing a single application across multiple

devices running on the same platform and every platform poses a unique

challenge for testers.

 Mobile network operators- There are over 400 mobile network operators in the

world, out of which some are CDMA, some GSM, whereas others use less

common network standards like FOMA, and TD-SCDMA. Each network operator

uses a different kind network infrastructure and this limits the flow of

information.

 Scripting- The variety of devices makes executing the test script (Scripting) a key

challenge. As devices differ in keystrokes, input methods, menu structure and

display properties single script does not function on every device.

 Problems faced by the customers in the existing mobile testing system will

provide a deeper understanding of the problem description.

 Variety of mobile devices in market and multiple manufacturers.

 Coping with the short lifecycle of the mobile application in market.

 Huge variety of hardware capabilities.

 Shorter duration of device life in the market.

 Variety of network modes like 2G/3G/4G/Wi-Fi/Wi-Max.

Department of Computer Science, Christ University

http://en.wikipedia.org/wiki/QWERTY
http://en.wikipedia.org/wiki/TD-SCDMA
http://en.wikipedia.org/wiki/FOMA
http://en.wikipedia.org/wiki/GSM
http://en.wikipedia.org/wiki/CDMA
http://en.wikipedia.org/wiki/BlackBerry
http://en.wikipedia.org/wiki/Windows_Phone
http://en.wikipedia.org/wiki/Symbian
http://en.wikipedia.org/wiki/IOS
http://en.wikipedia.org/wiki/Android_(operating_system)
http://en.wikipedia.org/wiki/Mobile_operating_system
http://en.wikipedia.org/wiki/Mobile_operating_system

 Mobile Testing as a Service 5

 Huge investment and high time frame to set up a test lab.

 Most of the tools are image based comparison tool.

 One test tool may not support all platforms versions.

 Tools may need jailbreak/rooting that invokes security threat.

 Testing on latest technologies like HTML5 etc.

1.2 EXISTING SYSTEM

Manual testing procedure is performed by a human sitting in front of a computer

carefully going through application screens, trying various usage and input combinations,

comparing the results to the expected behavior and recording their observations. Manual

tests are repeated often during development cycles for source code changes and other

situations like multiple operating environments and hardware configurations.

There are variety of problems that are faced by the customer in mobile testing. The main

problem faced is the manual procedure of testing mobile applications.

There are many aspects involved in the existing system of mobile testing like different

platforms android, ios, windows and blackberry. Different device specifications,

application specific factors like the native apps, mobile apps, network specific factors like

net connectivity, Wi-Fi, and geo specific problems are faced in the existing system. A

framework which can handle all these aspects with ease and an automated environment is

necessary in the market. Managing all the factors important for testing an android and

validating the app and make it fit enough to be uploaded into the Google store, apple

store etc

 The proposed system aims at developing a testing framework which allow the customer

to upload their apps and test various scenarios in a completely automated environment.

The framework is compatible with all platforms and contains all types of testing which

will test if the mobile application is in terms with all the conditions required to be used by

the user with ease.

Department of Computer Science, Christ University

 Mobile Testing as a Service 6

The existing system is involved with manual testing of an application. Manual testing is a

popular practice but it can be time consuming and tedious. The proposed framework

contains all the test cases in automated formatted which consumes less time and is cost-

effective.

The main advantage of an automated framework are assumptions, concepts and tools that

provide support for automated software testing is the low cost for maintenance. If there is

change to any test case then only the test case file needs to be updated and the driver

Script and start up script will remain the same. Tools like selendroid and UI automator is

used to support the automated framework. Therefore the existing system is tedious to use

and the manual style is time consuming. The customers have to depend on different

vendors and testers in order to test their app under different platforms and devices. The

framework proposed has completed automated test cases and is compatible with all

platforms and the effective emulators and simulators will ease the work load and is cost-

effective.

1.3 PROJECT SCOPE

Every software development group tests its products, yet delivered software always has

defects. Test engineers strive to catch them before the product is released but they often

reappear, even with the best manual testing processes. Automated software testing is the

best way to increase the effectiveness, efficiency and coverage of your software testing.

An automated testing tool is able to playback pre-recorded and predefined actions,

compare the results to the expected behavior and report the success or failure of these

manual tests to a test engineer. Once automated tests are created they can easily be

repeated and they can be extended to perform tasks impossible with manual testing.

Because of this, automated software testing is an essential component of successful

development projects.

The main aspect of this project which deals with Mobile Automation is :

 Find an element (e.g. Button)

 Interact with the element (e.g. Click a Button)

Department of Computer Science, Christ University

http://smartbear.com/products/qa-tools/automated-testing-tools
http://smartbear.com/products/qa-tools

 Mobile Testing as a Service 7

There are many factors which influence the need for mobile testing as a service. There

are many diverse mobile devices and Hardware appliances &APIs, diverse mobile

operation environments (platforms, connectivity, and configurations),diverse wireless

connectivity and configurations factors which influence the need for mobile testing as a

service.

Mobile TaaS offers a new business model for diverse mobile validation services using

pay-as-u-test to achieve cost-saving and cost-reduction in mobile computing resources,

networks, cloud computing and storage infrastructure.

MtaaS provides on demand testing services for mobile applications and Saas to support

software validation and quality engineering processes by leveraging a cloud based scal-

able mobile testing environment.

Before a developer publish the apps on Google Play and distribute them to users, the

application needs to be tested and the app should satisfy all the standards and

requirements of the Google play store, apple store accordingly.

The proposed system aims at developing a testing framework which allow the customer

to upload their apps and test various scenarios in a completely automated environment.

The main aim of the framework is testing of a mobile app through defining various

automated test case scenarios to improve quality and avoid bugs.

The main objectives of Mobile testing as a service are as follows

 Reduce mobile testing costs and complexity

 Easy to set up an integrated mobile test environment for projects

 Enable to support large-scale testing different types of mobile testing

 Compatibility with Android and ios.

 An ability to test in an automated environment with ease and define various test

cases for native apps and web apps.

Automated software testing is a process in which software tools execute pre-scripted tests

on a software application before it is released into production. The objective of automated

testing is to simplify as much of the testing effort as possible with a minimum set

of scripts. If unit testing consumes a large percentage of a quality assurance (QA) team's

resources, for example, then this process might be a good candidate for automation.

Department of Computer Science, Christ University

http://searchsoftwarequality.techtarget.com/definition/quality-assurance
http://searchsoftwarequality.techtarget.com/definition/unit-testing
http://searchenterpriselinux.techtarget.com/definition/script

 Mobile Testing as a Service 8

Automated testing tools are capable of executing tests, reporting outcomes and

comparing results with earlier test runs. Tests carried out with these tools can be run

repeatedly, at any time of day.

Department of Computer Science, Christ University

 Mobile Testing as a Service 9

2. SYSTEM ANALYSIS

2.1 FUNCTIONAL SPECIFICATIONS

Interface of MTaaS is designed using HTML and written in JavaScript .

The Interface consists of a Homepage. The Homepage consists of three links namely

Native Apps , Mobile Web App Testing and Contacts each leading to a new page when

clicked.

Native Apps Testing Page:

When clicked on Native Apps Testing, Login page is displayed which asks for the user

Login and Password. Once logged in, another page is displayed which consists of a

‘Browse’ button and a ‘Select AVD’ dropdown box.

We know that Native Apps can be accessed without a web connection. So in the

framework, by clicking on the Browse button, the user can upload a particular app which

needs to be tested browsing through his system. The user then needs to select a particular

Virtual Device on which the application needs to be tested i.e. from a list of Virtual

Devices available in the dropdown box.

Native App - Native apps are built for a specific platform with the platform SDK, tools

and languages, typically provided by the platform vendor

 Best Suited to provide best user experience and for targeted devices

 Dependent on native platform and hence requires separate code bases for

respective device platforms

Advantages

 Ability to leverage device-specific hardware and software

 A richer, more compelling user experience

 Ability to run offline

Department of Computer Science, Christ University

 Mobile Testing as a Service 10

 Disadvantages

 Separate version required for different platforms, which requires more cost and

time

 Updation of apps tedious compared to web apps

Mobile Web App Testing Page:

When clicked on the Mobile Web App Testing link, a Login page is displayed which asks

for the user Login and Password. Once logged in, another page is displayed which

consists of a Text box and a ‘Select AVD’ dropdown box.

Mobile web refers to the content that is viewed through a Smartphone’s web browser. If

you have a mobile version of your website, any mobile device owner with an Internet

browser installed (Internet Explorer, Mozilla Firefox) can view your mobile website.

Unlike Native app’s Browse button, a particular URL needs to be entered into the

Textbox of the mobile web app that needs to be tested.

The user then needs to select a particular Virtual Device on which the application needs

to be tested i.e. from a list of Virtual Devices available in the dropdown box . Once the

data is entered, the ‘Submit’ button needs to be clicked which stores the page in the

server side in the form of an xml document.

Web App – Mobile Web apps are server-side apps, built with any server-side technology

(PHP, Node.js, ASP.NET) that render HTML that has been styled so that it renders well

on a device form factor. They are accessible over device native / third party browsers

 Applicable if existing web page functionality to be accessed from wide range of

devices

 Maximum interoperability as there is little or no dependency on native device OS

Advantages

 Compatibility – Mobile Websites are generally compatible across browsers

 Upgradability – Mobile Websites can be Updated Instantly and pushed to users

 Time and Cost - Mobile Websites are Easier to and Less Expensive to develop

Disadvantages

Limited user experience as there will be a latency for every request to the server

Department of Computer Science, Christ University

 Mobile Testing as a Service 11

 Accessing device features like Camera, Address book, Bluetooth etc is very

limited

 Caching of data – only to certain extent

Emulator

Android emulator comes as part of the android SDK commonly known as AVD –

Android Virtual Device.

 It lets the user to prototype, develop, and test Android applications without using

a physical device. Android Emulators

 The AVD’s are OS version specific and provides the user the flexibility to

customize OS version, resolution, skin, sd card size and various other hardware

properties to be emulated.

 There are many command line utilities and tools which comes as part of the sdk

which makes it easy to debug and interact with emulator Prerequisites for Android

Emulator

 JRE – Java Runtime Environment

 Android SDK Installing an application

 If the application is available in Google Playstore it can be directly downloaded

and installed on to the device.

 If the application is available in ‘.apk’ format ,it can be installed using the

command, ‘adb install ’.Adb is a command line utility which comes as part of the

SDK.

Automated Framework:

Once a particular apk file is uploaded (Native App) or an url is typed (Mobile Web App)

into the testing framework and submitted. The files go to the server’s side and the testing

is done in a completely automated environment.

The proposed system aims at developing a testing framework which allows the customer

to upload their apps and test various scenarios in a completely automated environment.

In this framework Native App as well as Mobile Web App test frameworks are

embedded.

Department of Computer Science, Christ University

 Mobile Testing as a Service 12

With a pay-as-you-test methodology, this framework makes the mobile app testing easier,

faster and cost effective.

The reason why the mobile testing is rapidly expanding and marching towards the top of

the market depends on the fact that it has shown remarkable growth in business and

testing is a vital part.

Testing of a mobile app through defining various automated test case scenarios in order

to avoid bugs and to improve quality is the main idea behind the framework.

2.1.1 NON-FUNCTIONAL SPECIFICATIONS

Non-functional testing is an extensive part of software testing that obscures a lot of

different aspects of software behavior.

Some of the most usual non-functional tests that are identified and conducted on a regular

basis are performance, capacity, and failover tests.

The apps that are uploaded in the frame work exhibit non-functional requirements such

as:

 Memory Management

 Reliability

 Usability

 Maintainability

 Portability

 Recovery

The app will be subjected to several non-functional testing to portray its behaviour.

MtaaS system is very reliable. Reliability Testing is about processing an application so

that bugs are exposed and rectified before the system is used. The reason of this testing is

Department of Computer Science, Christ University

http://qatestlab.com/services/our-qa-services/performance-testing/

 Mobile Testing as a Service 13

to establish system trustworthiness, and to conclude whether the application meets the

client’s reliability necessities. Usability testing, the framework tests the simplicity with

which the user application can be used. It tests that is the software or the application

created is easy to use or not.Usability testing has few components which are described as

follows:

 Learnability: It is to check how simple for users to achieve fundamental tasks the

foremost moment when they meet the interface?

 Efficiency: To test how quickly knowledgeable users can complete tasks.

 Memorability: After a phase of not using the system, when the users revisit to the

interface do they memorize adequate to use it efficiently, or have to begin once

more learning all.

 Errors: To checks how much bugs the users create, how rigorous are these bugs

and how effortlessly can users rectify the bugs. Other than these factors perfor-

mance, security and compatibility are also important non-functional requirements.

 Performance testing: This testing is organized, to establish how quickly several

features of an application work under a specific load. It also exhibit the system’s

performance standard. Performance testing compares two systems to discover

which one works better than other. It also measures what element of the system is

responsible the system to carry out poorly.

 Security testing: Security testing ensures that the application or the system is

secured or not. It checks that can somebody hack the software or login into the

application by breaking the authentication. It concludes that a system protects

information and maintains performance as proposed.

 Compatibility testing: Compatibility testing; generally tests the system or the

product created with the computing background. It tests the application which is

created is friendly with the operating system, hardware, database or other

application or not. In this case it checks for compatibility with different platforms

like android, apple, windows and blackberry accordingly.

Department of Computer Science, Christ University

 Mobile Testing as a Service 14

Department of Computer Science, Christ University

 Mobile Testing as a Service 15

2.2 BLOCK DIAGRAM

Fig 2.2.1 Block diagram of MTaaS

Fig 2.2.2 Application specific module diagram

Department of Computer Science, Christ University

 Mobile Testing as a Service 16

2.3 SYSTEM REQUIREMENTS

2.3.1 HARDWARE REQUIREMENTS

 Hard Disk: 500GB

 RAM: 512MB

2.3.2 SOFTWARE REQUIREMENTS

 Eclipse (Juno).

 Operating System: Windows 7

 Programming Language: Java.

 Testing Tool : Selendroid, UI Automator.

2.3.3 TOOL SURVEY

Selenium originally is a tool to automate web browsers. The JSON Wire Protocol [2]

describes user interactions with a browser. Each browser has a specific driver which is a

native implementation for that specific browser. Selenium is a classic client/server

architecture. The client side is decoupled from the driver (server). From a client

perspective, the commands to interact with the browser are the same, regardless which

browser is used.

Selendroid is a test automation framework which drives off the UI of Android native and

hybrid applications (apps) and the mobile web. Tests are written using the Selenium 2

client API. Selendroid is a test automation framework which drives off the UI of Android

native and hybrid applications and the mobile web. Tests are written using the Selenium

2 client AP. Selendroid can be used on emulators and real devices and can be integrated

as a node into the Selenium Grid for scaling and parallel testing.

The use of Selendroid requires knowledge about how to use Selenium. For testing any

iOS native, hybrid, or mobile web application using WebDriver. Selendroid supports

Department of Computer Science, Christ University

 Mobile Testing as a Service 17

testing on hardware devices as well as using Android emulators. In the capabilities the

properties are used to find the device for the test execution.

Selendroid is an open source automation framework which drives of UI of android native,

hybrid and mobile web application. It supports both emulator and real device. It uses Json

Wire Protocol to run webdriver test scripts on device. It can be integrated with selenium

grid for parallel execution on multiple nodes. No need any modification in application

and not need source code to automate application.

Prerequisites:

 JDK should be installed and java home path setup in the machine.

 Android SDK should be installed on the machine

 Download Selendroid

 Selenium jar file

 Eclipse.

 Create new Emulator or attached real devices with the machine.

Features of selendroid

 No modification of app under test required in order to automate it

 Testing the mobile web using built in Android driver web view app

 Same concept for automating native or hybrid apps

 UI elements can be found by different locator types

 Gestures are supported: Advanced User Interactions API

 Selendroid can interact with multiple Android devices (emulators or hardware de-

vices) at the same time

 Existing emulators are started automatically

 Selendroid supports hot plugging of hardware devices

 Full integration as a node into Selenium Grid for scaling and parallel testing

 Multiple Android target API support (10 to 19)

 Built in Inspector to simplify test case development.

Department of Computer Science, Christ University

 Mobile Testing as a Service 18

UI AUTOMATOR

Android UI testing, the developer wants to test how the application interacts with a user

on a real device. UI testing ensures that the application returns the correct UI output in

response to a sequence of user actions, such as entering keyboard input or pressing

toolbars, menus, dialogs, images, and other UI controls.

A GUI tool to scan and analyse the UI components of an Android application. The uiau-

tomator tool provides a convenient visual interface to inspect the layout hierarchy and

view the properties of the individual UI components that are displayed on the test device.

Using this information, you can later create uiautomator tests with selector objects that

target specific UI components to test.The uiautomator testing framework lets the tester to

test the user interface (UI) efficiently by creating automated functional UI testcases that

can be run against the app on one or more devices.

Pre-requirements

 Install Android SDK, and set android_home environment to the correct path.

 Enable ADB setting on device and connect your android device using usb with

your PC.

The uiautomatorviewer, a GUI tool is used to scan and analyze the UI components of an

Android application. In order to use uiautomatorviewer, the tester must first download

and install the SDK and the Eclipse IDE according to the instructions at Setting up the

ADT Bundle. After the installation, the tool exists in the /tools/ folder and you can start it

by typing: uiautomatorviewer from the command line.

With uiautomator, the tester can inspect the UI of an application in order to find the lay-

out hierarchy and view the properties of the individual UI components of an application.

This is very important, particularly when it is needed to construct automation testing be-

cause, by knowing the layout hierarchy of the application and the IDs of the individual

widgets, the tester can use them in the uiautomator in order to create automation tests.

Department of Computer Science, Christ University

http://developer.android.com/sdk/installing/bundle.html
http://developer.android.com/sdk/installing/bundle.html
http://developer.android.com/tools/testing/testing_ui.html
http://developer.android.com/sdk/index.html

Google’s Android
Play store

Google’s Android
Play store

Network
Specific
Network
Specific

Device SpecificDevice Specific

Geo SpecificGeo Specific

Application
Specific
Application
Specific

Apple’s App Store
Apple’s App Store

Network
Specific
Network
Specific

Device SpecificDevice Specific

Geo SpecificGeo Specific

Window’s Phone
Store

Window’s Phone
Store

Network
Specific
Network
Specific Blackberry’s App

World

Blackberry’s App
World

Network
Specific
Network
Specific

Device SpecificDevice Specific

Geo SpecificGeo Specific

Device SpecificDevice Specific

Geo SpecificGeo Specific

 Mobile Testing as a Service 19

3. SYSTEM DESIGN

3.1 SYSTEM ARCHITECTURE

3.2 MODULE DESIGN

Department of Computer Science, Christ University

 Mobile Testing as a Service 20

Fig 3.2.1 Modular Design of MtaaS

MTaaS is planned to be released in four stages or modules.

Phase 1: Google’s Android Play Store

Phase 2: Apple’s App Store.

Phase 3: Window’s Phone Store.

Phase 4: Blackberry’s App World.

Google’s App Store

Google Play, originally the Android Market, is a digital distribution platform operated

by Google. It serves as the official app store for the Android operating system, allowing

users to browse and download applications developed with the Android SDK and

published through Google. Google Play also serves as a digital media store, offering

music, magazines, books, movies, and television programs. Users can also purchase

hardware devices through the service, such as Chrome books, Google Nexus-branded

mobile devices, Chrome casts, and accessories.

 Applications are available through Google Play either free of charge or at a cost. They

can be downloaded directly to an Android or Google TV device through the Play

Store mobile app, or by deploying the application to a device from the Google Play

website. Many applications can be targeted to specific users based on a particular

hardware attribute of their device, such as a motion sensor (for motion-dependent games)

or a front-facing camera (for online video calling).

Department of Computer Science, Christ University

http://en.wikipedia.org/wiki/Software_deployment
http://en.wikipedia.org/wiki/Mobile_app
http://en.wikipedia.org/wiki/Google_TV
http://en.wikipedia.org/wiki/Chromecast
http://en.wikipedia.org/wiki/Mobile_device
http://en.wikipedia.org/wiki/Google_Nexus
http://en.wikipedia.org/wiki/Chromebook
http://en.wikipedia.org/wiki/Digital_media
http://en.wikipedia.org/wiki/Android_SDK
http://en.wikipedia.org/wiki/Android_(operating_system)
http://en.wikipedia.org/wiki/App_store
http://en.wikipedia.org/wiki/Google
http://en.wikipedia.org/wiki/Digital_distribution

 Mobile Testing as a Service 21

Apple App Store

The App Store is a digital distribution platform for mobile apps on iOS, developed and

maintained by Apple Inc. The service allows users to browse and download applications

that are developed with Apple's iOS SDK. The apps can be downloaded directly to an

iOS device, or onto a personal computer via iTunes (also developed and maintained

by Apple Inc.).

Applications are targeted at iOS devices, including iPhones and iPads, and may make use

of specific attributes of those devices, such as motion sensors for game controls and

cameras for online video calling. Apps may be downloaded for free or for a set cost, and

they may include in-app monetization (costs levied through buyable features and/or

advertising). Apple takes 30 percent of all revenue generated through apps, and 70

percent goes to the app's publisher.

Window’s Phone Store

Windows Phone Store (previously Windows Phone Marketplace) is a digital distribution

platform developed by Microsoft for its Windows Phone platform that allows users to

browse and download applications that have been developed by third parties.

 Like much of the new Windows products, it features "Metro UI"; the UI is presented in

a panoramic view where the user can browse categories and titles, see featured items, and

get details with ratings, reviews, screen shots, and pricing information.

The Windows Phone Store (replacing Windows Marketplace for Mobile) was launched

along with Windows Phone 7 in October 2010 in some countries. It was reported on

October 4, 2010 that the Windows Phone SDK was downloaded over half a million

times. At the end of February 2013, the Marketplace had more than 130,000 apps

available. With the rollout of Mango (Windows Phone 7.5) the online web Marketplace

was unveiled by Microsoft; it offers various features like silent, over the air installation of

apps to the user's device.

Department of Computer Science, Christ University

http://en.wikipedia.org/wiki/Software_development_kit
http://en.wikipedia.org/wiki/Panoramic
http://en.wikipedia.org/wiki/User_interface
http://en.wikipedia.org/wiki/Metro_(design_language)
http://en.wikipedia.org/wiki/Mobile_apps
http://en.wikipedia.org/wiki/Windows_Phone
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/IPad
http://en.wikipedia.org/wiki/IPhone
http://en.wikipedia.org/wiki/Apple_Inc.
http://en.wikipedia.org/wiki/ITunes
http://en.wikipedia.org/wiki/IDevice
http://en.wikipedia.org/wiki/IOS_SDK
http://en.wikipedia.org/wiki/Apple_Inc.
http://en.wikipedia.org/wiki/IOS
http://en.wikipedia.org/wiki/Mobile_app
http://en.wikipedia.org/wiki/Digital_distribution

 Mobile Testing as a Service 22

Blackberry’s App World

BlackBerry World is an application distribution service and application by BlackBerry

Ltd for a majority of BlackBerry devices. The service provides BlackBerry users with an

environment to browse, download and update third-party applications. The service went

live on April 1, 2009. Of the three major app stores of different Operating systems, it has

the largest revenue per app compared to the Apple App Store and Google Play, respec-

tively. On 21 January 2013, BlackBerry announced that it rebranded the BlackBerry App

World to simpler BlackBerry World as part of the upcoming release of the BlackBerry

10 operating system.

 As of March 2013 - BlackBerry App World is available in 170 markets and supports 23

currencies and 33 languages. Over 6 million applications are downloaded daily with an

aggregate of over 4 billion downloads to-date and accepts payment in all markets using a

combination of PayPal, credit card, and carrier billing.

 SUB MODULES

Application specific

Application specific module deals with two major components called native app and

mobile web app.

Native App - Native apps are built for a specific platform with the platform SDK, tools

and languages, typically provided by the platform vendor.

Web App – Mobile Web apps are server-side apps, built with any server-side technology

(PHP, Node.js, ASP.NET) that render HTML that has been styled so that it renders well

on a device form factor. They are accessible over device native / third party browsers

Network specific

The network specific module deals with the strength, availability, reliability, switching

between 3G and Wi-fi, 2G and hotspot related to different platforms like android, apple,

Department of Computer Science, Christ University

http://en.wikipedia.org/wiki/BlackBerry_10
http://en.wikipedia.org/wiki/BlackBerry_10
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Mobile_apps
http://en.wikipedia.org/wiki/BlackBerry
http://en.wikipedia.org/wiki/BlackBerry_Ltd
http://en.wikipedia.org/wiki/BlackBerry_Ltd
http://en.wikipedia.org/wiki/Digital_distribution

 Mobile Testing as a Service 23

windows and blackberry. This tests how the app behaves when subjected to all these net-

work related changes.

Device specific

The device specific factors differs depending on the device that is used for testing an app.

It is important to test and understand the behaviour of the app in different mobile devices.

There are two main device specific factors to be considered, namely, platform and orien-

tation.

Platform involves consistency, actions such as swipe , Zoom-in, Zoom-out, multi-touch ,

long press(touch and hold), double tap and rotate.

Orientation is of two types, Landscape and Portrait. This checks how the app behaves

when the screen orientation is changed. The factors an app should satisfy are correctness

in alignments, pop ups, notifications, font size, zoom and swipe.

Generic mobile testing

Many generic specific modules deals with the general testing that the app should be

subjected to, irrespective of the platform.

Each platform will have a set of guidelines or general requirement specifications to be

followed before publishing the app into the app store.

General mobile testing has 4 main categories as mentioned below.

 Updates:

 upgrade - os

 developer data seed

 developer license

 downgrade

Department of Computer Science, Christ University

 Mobile Testing as a Service 24

Notifications:

 Enable / Disable

 Local notification

 Wi-Fi or Cellular - push notification

 Visual, Sound and Vibration

 Notification from other apps

 Screen locked

 Setting

Guidelines

 apple HIG

 apple app store review

 android design

 Google play review

Communication interruptions

 voice messages

 calls

Department of Computer Science, Christ University

 Mobile Testing as a Service 25

 text messages

 Interruption Testing

 SMS, MMS, and Charger insertion.

Department of Computer Science, Christ University

 Mobile Testing as a Service 26

3.3 DATABASE DESIGN

3.3.1 DATA FLOW DIAGRAM

Fig 3.3.2.1 Data Flow Diagram

Department of Computer Science, Christ University

Develop
er
Develop
er

LMC
FRAMEWORK

LMC
FRAMEWORK

App under
Test

App under
Test

AVD
Android
Virtual
Device

Automated TEST
SCRIPTS

TEST REPORT

BUGZILLA

 Mobile Testing as a Service 27

3.4 INTERFACE DESIGN

3.4.1 USER INTERFACE SCREEN DESIGN

Fig 3.4.1 Interface Design

Department of Computer Science, Christ University

WELCOME!
LMC MTaaS

Login PageLogin Page

NATIVE
APP

TESTING

NATIVE
APP

TESTING

Mobile Web
App Testing
Mobile Web
App Testing

Login PageLogin Page

Browse the APK
and select an AVD

Enter the URL
and select an AVD

SERVER
SERVER

 Mobile Testing as a Service 28

4. IMPLEMENTATION

4.1 CODING STANDARD

 Interface

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8">

<title>LMC Mobile Testing As A Service</title>

<link href="style.css" rel="stylesheet" type="text/css" />

</head>

<body>

<div id="wrapper">

<header><h1> Welcome! LMC MTaaS</h1></header>

<form method=POST action=MTaaS.jsp>

<nav>

<a name=htmlAPP_URL href="LMCMTaaS-Login.html?

AppType="+"NativeApp"+">Native App Testing

 |

<a name=htmlAPP_URL href="LMCMTaaS-Login.html?AppType="+"LMCMTaaS-

MobileWebApp"+">Mobile Web App Testing

 |

Contact Us

</nav>

</form>

</html>

Department of Computer Science, Christ University

view-source:file:///E:/MEERA/index.html#article4
view-source:file:///E:/MEERA/LMCMTaaS-Login.html?AppType=
view-source:file:///E:/MEERA/LMCMTaaS-Login.html?AppType=
view-source:file:///E:/MEERA/LMCMTaaS-Login.html?AppType=
view-source:file:///E:/MEERA/MTaaS.jsp
view-source:file:///E:/MEERA/style.css

 Mobile Testing as a Service 29

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8">

<title>LMC Mobile Testing As A Service</title>

<link href="style.css" rel="stylesheet" type="text/css" />

</head>

<div id="wrapper">

<header><h1> Welcome! LMC MTaaS</h1></header>

<nav>

<a href="file:///C:/MTaaSAppium/simple_html5_tutorial_entheosweb/LMCMTaaS-Na-

tiveAppTesting.html">Native App

Testing &n

bsp; |

Mobile Web App

Testing &n

bsp; |

Contact Us

<body>

 </br>

 </br>

 </br>

<table align="center">

 <form method=POST action=LMCMTaaS-MobileWebAppTesting-temp.jsp>

 <h3> Login </h3>

Login : <input type="email"

name=MTaaSLogin required value="Email" on-

Blur="if(this.value=='')this.value='Email'" onFocus="if(this.value=='Email')this.value=''

">

 </br>

Department of Computer Science, Christ University

view-source:file:///E:/MEERA/LMCMTaaS-MobileWebAppTesting-temp.jsp
view-source:file:///E:/MEERA/LMCMTaaS-Login.html?AppType=#article4
view-source:file:///E:/MEERA/LMCMTaaS-Login.html?AppType=#article2
view-source:file:///C:/MTaaSAppium/simple_html5_tutorial_entheosweb/LMCMTaaS-NativeAppTesting.html
view-source:file:///C:/MTaaSAppium/simple_html5_tutorial_entheosweb/LMCMTaaS-NativeAppTesting.html
view-source:file:///E:/MEERA/style.css

 Mobile Testing as a Service 30

Password : <input type="password" name=MTaaSPassword required value="Pass-

word" onBlur="if(this.value=='')this.value='Password'" onFocus="if(this.value=='Pass-

word')this.value='' ">

 </br>

 </br>

 <input type="submit" value="Login">

 <footer class="clearfix">

 <p>

 ?

 Forgot Password

 </p>

 </footer>

 </form>

 </table>

</body>

</div>

</nav>

</html>

Jsp

<html> <head> <meta charset="UTF-8">

<title>LMC Mobile Testing As A Service</title>

<link href="style.css" rel="stylesheet" type="text/css" /> </head>

<body> <table> <tr> <div id="wrapper"> <header><h1> LMC MTaaS - Mobile Web

App Testing</h1></header>

<nav> Contact Us</nav> </div> </tr>

<tr> <div>

<div id="wrapper">

<table >

<td> </td>

Department of Computer Science, Christ University

view-source:file:///E:/MEERA/LMCMTaaS-Login.html?AppType=

 Mobile Testing as a Service 31

<td align="center">

 <form method=POST action=MTaaS.jsp>

<table><tr><td>

Enter the URL of the Mobile Web App to be tested:

<input type=text name=htmlAPP_URL size=16>

 </td>

 </br>

 </br>

 <td> <div>

 <table> <tr>

<div id="faq" class="super-container full-width" style="padding-top:40px;padding-

bottom:20px">

 Select the Virtual Device on which the application to be tested

 <td><select name="htmlAVD" >

 <option value="DEVICEAPILevel14">

 Name: device001 Device: Nexus One (Google) Target: Android 2.1 (API level 7)

Tag/ABI: default/armeabi Skin: 480x800</option>

 <option value="DEVICEAPILevel15"> Name: device003 Device: Nexus 5

(Google) Target: Android 4.4.2 (API level 19) Tag/ABI: default/armeabi-v7a Skin:

1080x1920</option> </select></td> </tr> </table>

</div> </td> </tr>

<tr> <td>

List of Physical Devices Available for Testing<table>

<tr>

<td> <div class="super-container full-width "> <div class="container"

id="features">

<div> <ul class="grid cs-style-1"> <li class="one-third column

defaultShadowStyle3 mywhite">

<figure > <hText> <h1 class="iconSize alignC lightText3"><left>

 </left></h1>

<figcaption> <h3>Samsung Galaxy S5</h3> <p class="marginT10">

Department of Computer Science, Christ University

 Mobile Testing as a Service 32

SM-G900H
 Android 4.4.2
 5.1" Screen
 1080 x 1920 Resolution
 2

GB Ram
 xxhdpi </p> </figcaption> </figure>

</td>

<td>

<li class="one-third column defaultShadowStyle3 mywhite">

<figure > <hText> <h1 class="iconSize alignC lightText3">

<center> </center></h1>

<figcaption> <h3>Nokia X</h3> <p class="marginT10"> RM-980
 Android 4.1.2

 4.0" Screen
 480 x 800 Resolution
 512 MB Ram
 hdpi </p>

</figcaption> </figure> </td>

<td>

<li class="one-third column defaultShadowStyle3 mywhite"> <figure >

<hText>

<left> </left>

 <h3>LG Nexus 5</h3> <p class="marginT10">

Nexus5
 Android 4.4.2
 5.0" Screen
1080 x 1920 Resolution
2 GB

Ram
xxhdpi</p>

</figure>

</td>

 </div> </div> <!-- End 960 Container --></div> <!-- super container -->

</td></tr>

</div></tr>

</table>

</form>

</td>

<td> </td>

</tr>

</table>

</div>

</body></html>

Department of Computer Science, Christ University

 Mobile Testing as a Service 33

 <%@

 page import = "java.lang.*" %><%@

 page import = "java.io.*" %><%!

String appURL1 = null;

 String AVD1 = null;

 %>

 <% appURL1="<" + "MAINPROJECT" + "><" + "PROJECT"

+"><"+"APP_URL"+">"+ request.getParameter("htmlAPP_URL")

+"</"+"APP_URL"+">"; %>

 <% AVD1="<DEVICE_NAME>" +request.getParameter("htmlAVD") +

"</DEVICE_NAME></PROJECT></MAINPROJECT>"; %>

<%

FileOutputStream fos = new

FileOutputStream("c:\\MTaaS\\EnvironmentDetails\\MobileWebApp.xml");

DataOutputStream dos = new DataOutputStream(fos);

dos.writeBytes(appURL1 + AVD1);

dos.flush();

 dos.close()

%>

Css

* {

 -moz-box-sizing: border-box;

 box-sizing: border-box;

 }

*:before,

 *:after {

 -moz-box-sizing: border-box;

 box-sizing: border-box;

}

body {

 background: #C0C0C0;

Department of Computer Science, Christ University

 Mobile Testing as a Service 34

 color: #999;

 font: 400 16px/1.5em sans-serif;

 margin: 2

 }

h3 {

 margin: 0;

 }

 a {

 color: #999;

 text-decoration: none;

 }

a:hover {

 color: #1dabb8;

}

fieldset {

 border: none;

 margin: 0

 display: block;

 margin-left: 2px;

 margin-right: 2px;

 padding-top: 0.35em;

 padding-bottom: 0.625em;

 padding-left: 0.75em;

 padding-right: 0.75em;

 border: 2px groove (internal value);

 }

input {

 border: none;

 font-family: inherit;

 font-size: inherit;

 margin: 0;

Department of Computer Science, Christ University

 Mobile Testing as a Service 35

 -webkit-appearance: none;

}

input:focus {

 outline: none;

}

input[type="submit"] {

 cursor: pointer

 }

.clearfix {

 *zoom: 1;

 }

 .clearfix:before,

 .clearfix:after {

 content: ' ';

 display: table;

}

 .clearfix:after {

 clear: both;

}

.container {

 left: 50%;

 position: fixed;

 top: 50%

 -webkit-transform: translate(-50%, -50%);

 -ms-transform: translate(-50%, -50%);

 transform: translate(-50%, -50%);

 }

 #login-form {

 width: 300px;

 }

Department of Computer Science, Christ University

 Mobile Testing as a Service 36

#login-form h3 {

 background-color: #282830;

 border-radius: 5px 5px 0 0;

 color: #fff;

 font-size: 14px;

 padding: 20px;

 text-align: center;

 text-transform: uppercase;

}

#login-form fieldset {

 background: #fff;

 border-radius: 0 0 5px 5px;

 padding: 20px;

 position: relative

}

#login-form fieldset:before

 {

 background-color: #fff;

 content: "";

 height: 8px;

 left: 50%;

 margin: -4px 0 0 -4px;

 position: absolute;

 top: 0;

 -webkit-transform: rotate(45deg);

 -ms-transform: rotate(45deg)

 transform: rotate(45deg);

 width: 8px;

}

#login-form input {

 font-size: 14px

Department of Computer Science, Christ University

 Mobile Testing as a Service 37

 }

#login-form input[type="email"],

#login-form input[type="password"]

 {

 border: 1px solid #dcdcdc

 padding: 12px 10px;

 width: 100%

 }

#login-form input[type="email"] {

 border-radius: 3px 3px 0 0;

}

#login-form input[type="password"] {

 border-top: none;

 border-radius: 0px 0px 3px 3px;

}

#login-form input[type="submit"] {

 background: #1dabb8;

 border-radius: 3px;

 color: #fff;

 float: right;

 font-weight: bold;

 margin-top: 20px;

 padding: 12px 20px;

 }

#login-form input[type="submit"]:hover

 {

 background: #198d98

}

 #login-form footer {

 font-size: 12px;

 margin-top: 16px

Department of Computer Science, Christ University

 Mobile Testing as a Service 38

 }

.info {

 background: #e5e5e5;

 border-radius: 50%;

 display: inline-block;

 height: 20px;

 line-height: 20px;

 margin: 0 10px 0 0;

 text-align: center;

 width: 20px;

 }

<html>

<head><meta charset="UTF-8">

<link rel="stylesheet" type="text/css" href="mystyle.css" />

<div style="color:Black" font-family = "Arial, Verdana, sans-serif">

<h1>LMC Mobile Testing As A Service</h1>

</div>

</head>

 <form method=POST action=MTaaS.jsp>

<h3 >Enter the URL of the Mobile Web App to be tested:</h3>

<input text-align="left" type=text name=htmlAPP_URL size=16>

<tr>

<td>

<style>

body {background-color:lightgray;

font-family: Arial, Verdana, sans-serif;}

h3 {color:green;}

Department of Computer Science, Christ University

view-source:file:///E:/nw%20login/login/login/MTaaS.jsp
view-source:file:///E:/nw%20login/login/login/mystyle.css

 Mobile Testing as a Service 39

h3 {text-align:left}

</style>

</br>

</br>

<h3 > Enter the AVD on which Mobile Web App to be

tested:</h3>

</br>

<td ><select name="htmlAVD" >

 <option value="1" > Name: device001 Device: Nexus One (Google) Target: Android

2.1 (API level 7) Tag/ABI: default/armeabi Skin: 480x800</option>

 <option value="2" > Name: device003 Device: Nexus 5 (Google) Target: Android

4.4.2 (API level 19) Tag/ABI: default/armeabi-v7a Skin: 1080x1920</option>

</td>

<input type=submit name=action value="Submit">

</form>

</html>

JAVA

import java.util.List;

import java.util.concurrent.TimeUnit;

import org.apache.commons.io.FileUtils;

import org.openqa.selenium.By;

import org.openqa.selenium.Keys;

import org.openqa.selenium.OutputType;

import org.openqa.selenium.Platform;

import org.openqa.selenium.TakesScreenshot;

import org.openqa.selenium.WebDriver;

import org.openqa.selenium.WebElement;

import org.openqa.selenium.interactions.Actions;

Department of Computer Science, Christ University

 Mobile Testing as a Service 40

import org.openqa.selenium.interactions.touch.SingleTapAction;

import org.openqa.selenium.interactions.touch.TouchActions;

import org.openqa.selenium.support.ui.ExpectedConditions;

import org.openqa.selenium.support.ui.Select;

import io.selendroid.SelendroidCapabilities;

import io.selendroid.SelendroidConfiguration;

import io.selendroid.SelendroidDriver;

import io.selendroid.SelendroidLauncher;

import java.io.File;

import java.io.IOException;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.ParserConfigurationException;

import org.w3c.dom.Document;

import org.w3c.dom.Element;

import org.w3c.dom.Node;

import org.w3c.dom.NodeList;

import org.xml.sax.SAXException;

public class TestUR4 {

public static void main(String[] args) throws Exception

{

 SelendroidLauncher selendroidServer = null;

 WebDriver driver = null;

 SelendroidConfiguration config = new SelendroidConfiguration();

 selendroidServer = new SelendroidLauncher(config);

 selendroidServer.launchSelendroid();

 SelendroidCapabilities sc = new SelendroidCapabilities();

 sc.setBrowserName("android");

 sc.setPlatform(Platform.ANDROID);

 sc.device("device1");

 driver = new SelendroidDriver(sc);

Department of Computer Science, Christ University

 Mobile Testing as a Service 41

 driver.get("http://m.ticketgoose.com");

 WebElement b1 =

driver.findElement(By.xpath("//*[@id='homePagePopup']/div[1]"));

 TouchActions flick1 = (TouchActions) new TouchActions(driver).click(b1);

 flick1.click(b1);

 driver.findElement(By.id("FromStationsNameTxt")).sendKeys("BANGALORE");

 driver.findElement(By.id("ToStationsNameTxt")).sendKeys("MYSORE");

 WebElement we = driver.findElement(By.id("day"));

 Select sel1 = new Select(we);

 System.out.println("TYPE IS -------------------");

 System.out.println(we.getAttribute("type"));

 sel1.selectByIndex(4);

 WebElement we1 = driver.findElement(By.id("month"));

 System.out.println("TYPE IS -------------------");

 System.out.println(we1.getAttribute("type"));

 Select sel2 = new Select(driver.findElement(By.id("month")));

 TouchActions flick = new TouchActions(driver).singleTap(b1);

 flick.perform();

 TouchActions flick2 = (TouchActions) new TouchActions(driver).doubleTap(b1);

 flick2.perform();

 TakesScreenshot scrShot =((TakesScreenshot)driver);

SrcFile=scrShot.getScreenshotAs(OutputType.FILE);

File("..\\Reports\\ticketgoose.png")

 FileUtils.copyFile(SrcFile, DestFile);

 driver.switchTo().alert().dismiss();

 }

}

ReadXML

Department of Computer Science, Christ University

 Mobile Testing as a Service 42

import java.io.File;

import java.io.IOException;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.ParserConfigurationException;

import org.w3c.dom.Document;

import org.w3c.dom.Element;

import org.w3c.dom.Node;

import org.w3c.dom.NodeList;

import org.xml.sax.SAXException;

public class ReadXML {

public String readfile(String readData) throws ParserConfigurationException, SAXEx-

ception, IOException

{

 File xmlfile = new File("C:\\MTaaS\\EnvironmentDetails\\MobileWebAp-

p.xml");

DocumentBuilderFactory dbfactory =DocumentBuilderFacto-

ry.newInstance();

DocumentBuilder dbuilder = dbfactory.newDocumentBuilder();

Document doc = dbuilder.parse(xmlfile);

NodeList nlist = doc.getChildNodes();

Node node1 = nlist.item(0);

Element e1 = (Element)node1;

String url = e1.getElementsByTagName(readData).item(0).getTextCon-

tent();

return url;

}

}

Department of Computer Science, Christ University

 Mobile Testing as a Service 43

4.2 SCREEN SHOTS

Fig 4.2.1 Welcome Page

Department of Computer Science, Christ University

 Mobile Testing as a Service 44

Fig 4.2.2 Login Page

Department of Computer Science, Christ University

 Mobile Testing as a Service 45

Fig 4.2.3 Mobile Web App Testing Page

Department of Computer Science, Christ University

 Mobile Testing as a Service 46

Fig 4.2.4 Automatic Launching of Emulator

Department of Computer Science, Christ University

 Mobile Testing as a Service 47

Fig 4.2.5 Lauching of Selenium Web Driver

Department of Computer Science, Christ University

 Mobile Testing as a Service 48

Fig 4.2.6 Ad Displayed

Department of Computer Science, Christ University

 Mobile Testing as a Service 49

Fig 4.2.7 Ad Blocked Automatically

Department of Computer Science, Christ University

 Mobile Testing as a Service 50

Fig 4.2.8 Automatic Click and dropdown menu displayed for From Station

Department of Computer Science, Christ University

 Mobile Testing as a Service 51

Fig 4.2.9 From Station selected from the dropdown and displayed

Department of Computer Science, Christ University

 Mobile Testing as a Service 52

Fig 4.2.10 Automatic Click and dropdown menu displayed for To Station

Department of Computer Science, Christ University

 Mobile Testing as a Service 53

Fig 4.2.11 Automation selection of the Day from the dropdown list

Department of Computer Science, Christ University

 Mobile Testing as a Service 54

Fig 4.2.12 Automatic Click on the Month

Department of Computer Science, Christ University

 Mobile Testing as a Service 55

Fig 4.2.13 Automation selection of the Month from the dropdown list

Department of Computer Science, Christ University

 Mobile Testing as a Service 56

Fig 4.2.14 Result in process

Department of Computer Science, Christ University

 Mobile Testing as a Service 57

Fig 4.2.15 Result Displayed Automatically

Department of Computer Science, Christ University

 Mobile Testing as a Service 58

Fig 4.2.16 Automatic selection of Upper Deck

Department of Computer Science, Christ University

 Mobile Testing as a Service 59

Fig 4.2.17 Automatic selection of Lower Deck

Department of Computer Science, Christ University

 Mobile Testing as a Service 60

Fig 4.2.18 Automatic selection of the Boarding Place and Time from the Dropdown list

Department of Computer Science, Christ University

 Mobile Testing as a Service 61

Fig 4.2.19 Automatic entry of Email-id

Department of Computer Science, Christ University

 Mobile Testing as a Service 62

Fig 4.2.20 Automatic entry of Mobile number

Department of Computer Science, Christ University

 Mobile Testing as a Service 63

Fig 4.2.21 Automatic entry of the Name

Department of Computer Science, Christ University

 Mobile Testing as a Service 64

Fig 4.2.22 Automatic entry of the Age and selection of the Gender

Department of Computer Science, Christ University

 Mobile Testing as a Service 65

Fig 4.2.23 Automatic selection of ‘continue’ button without accepting the ‘Terms and conditions’

checkbox

Department of Computer Science, Christ University

 Mobile Testing as a Service 66

Fig 4.2.24 Error message displayed

Department of Computer Science, Christ University

 Mobile Testing as a Service 67

Fig 4.2.25 Navigates to the next page on clicking ‘continue’

Department of Computer Science, Christ University

 Mobile Testing as a Service 68

5. TESTING

The purpose of testing is to discover errors. Testing is the process of trying to discover

every conceivable fault or weakness in a work product. It provides a way to check the

conceivable fault or weakness in a work product. It provides a way to check the

functionality of components, sub-assemblies, assemblies and a finished product. It is the

process of exercising software with the intent of ensuring that the software system meets

its requirements and user expectations and does not fail in an unacceptable manner. There

are various types of test. Each test type addresses a specific testing requirement.

5.1 TYPES OF TESTING METHODOLOGIES

The following are the Testing methodologies:

 Unit Testing.

 Integration Testing.

 System Testing.

 Validation Testing.

 Verification Testing.

5.1.1 UNIT TESTING

The procedure level testing is made first. By giving improper inputs, the errors occurred

are noted and eliminated. Then the web form level testing is made. For example, storing

the data into the table in the correct manner is checked. The dates are entered in wrong

manner and checked. Wrong email-id and web site URL (Universal Resource Locator) is

given and checked.

5.1.2 INTEGRATION TESTING

Testing is done for each module. After testing all the modules, the modules are integrated

and testing of the final system is done with the test data, specially designed to show that

Department of Computer Science, Christ University

 Mobile Testing as a Service 69

the system will operate successfully in all its aspects conditions. Thus the system testing

is a confirmation that all is correct and an opportunity to show the user that the system

works.

The following are the types of Integration Testing:

 Top Down Integration

 This method is an incremental approach to the construction of program structure.

Modules are integrated by moving download through the control hierarchy,

beginning with the main program module. The module subordinates to the main

program module are incorporated into the structure in either a depth firth or

breadth first manner.

In this method, the software is tested from main module and individual stubs are

replaced when the test proceeds downwards.

 Bottom-up Integration

 This method begins the construction and testing with the modules at the lowest

level in the program structure. Since the modules are integrated from the bottom

up, processing required for modules subordinate to a given level is always

available and the need for stubs is eliminated.

The bottom up approaches tests each module individually and then each module is

module is integrated with a main module and tested for functionality.

5.1.3 SYSTEM TESTING

System testing of software or hardware is testing conducted on a complete, integrated

system to evaluate the system's compliance with its specified requirements. System

testing falls within the scope of black box testing, and as such, should require no

knowledge of the inner design of the code or logic.

As a rule, system testing takes, as its input, all of the "integrated" software components

that have successfully passed integration testing and also the software system itself

integrated with any applicable hardware system. System testing is performed on the

entire system in the context of a System Requirement Specification (SRS). System testing

Department of Computer Science, Christ University

 Mobile Testing as a Service 70

tests not only the design, but also the behavior and even the believed expectations of the

customer.

5.1.4 VALIDATION TESTING

The final step involves validation testing, which determines whether the software

function as the user expected. The end-user rather than the system developer conduct this

test most software developers as a process called “Alpha and Beta testing” to uncover

that only the end user seems able to find.

 The compilation of the entire project is based on the full satisfaction of the end users. In

the project, validation testing is made in various forms. In registration form Email id,

phone number and also mandatory fields for the user is verified.

5.1.5 VERIFICATION TESTING

Verification is a fundamental concept in software design. This is the bridge between

customer requirements and an implementation that satisfies those requirements. This is

verifiable if it can be demonstrated that the testing will result in an implementation that

satisfies the customer requirements.

In-adequate testing or non-testing leads to errors that may appear few months later. This

will create two problems:

 Time delay between the cause and appearance of the problem.

 The effect of the system errors on files and records within the system.

Department of Computer Science, Christ University

 Mobile Testing as a Service 71

5.2 TEST CASES

Test title: Relaunch the App

NO TEST CASES TEST STEPS EXPECTED RESULT

1

From each app screen,

press the device's

Home key, then re-

launch the app from the

All Apps screen.

Launch the application The home page gets displayed.

Click on the Home button
Device's Home button gets

clicked

Click on the Browser again
The application in the browser

should be re launched

2

From each app screen,

switch to another

running app and then

return to the app under

test using the Recents

app switcher.

Launch the application The home page gets displayed.

Click on the Home button
Device's Home button gets

clicked
Launch another running

Application

Another application gets

launched.
Long Press on the Home

button

The Home button Is long

pressed
List of all the recently

opened apps should be

displayed

All the apps recently opened

and under process gets

displayed
Click on the browser under

test

The browser under test gets

clicked

Should Navigate to the last

viewed page on the browser

The last viewed page on the

browser gets displayed.

3

From each app screen

(and dialogs), press the

Back button.

Scenario 1

Launch the application The home page gets displayed.

Press on the device's back

button
Home screen gets displayed

Scenario 2

Launch the application The home page gets displayed.

Department of Computer Science, Christ University

 Mobile Testing as a Service 72

Browse through different

pages in the app
The next page gets displayed

Press on the device's back

button

Previous page of the app gets

displayed

4

From each app screen,

rotate the device

between landscape and

portrait orientation at

least three times.

Launch the application in the

Browser

The application in the Browser

gets launched

Press Ctrl+Fn+F12
The Screen rotates

(Portrait/Landscape)

Press Ctrl+Fn+F12 again The Orientation changes

Repeat the same procedure

thrice

The Orientation changes

accordingly.

5

Switch to another app

to send the test app into

the background. Go to

Settings and check

whether the test app

has any services

running while in the

background.

Launch the Application

under test

The Application under test gets

launched.
Press on the device's Home

button

The app under test goes to the

background

Switch to another app Another app gets launched.

Go to menu
All the options in the Menu

will be displayed

Click on Settings
All the options under Settings

will be displayed

Click on Apps

All the Apps (Downloaded,

Running, On SD Card and all)

are displayed.

Click on Running

All the apps running in the

background will be displayed

along with their services.

Click on the app under test
The app under test and its

services are displayed.

6

Press the power button

to put the device to

sleep, then press the

power button again to

awaken the screen.

Press the Power button The device goes to sleep

Again press the power button
The device awakens and is in

the unlocked state

Department of Computer Science, Christ University

 Mobile Testing as a Service 73

7

Set the device to lock

when the power button

is pressed. Press the

power button to put the

device to sleep, then

press the power button

again to awaken the

screen, then unlock the

device.

Press the Power button The device goes to sleep

Again press the power button
The device awakens and is in

the unlocked state

Unlock the device
The device gets unlocked and

ready to use

8

Observe in the

notifications drawer ,all

types of notifications

that the app can

display. Expand

notifications where

applicable, and tap all

actions offered.

Drag the Notifications

drawer from the top of the

screen.

All the notifications from the

app (e.g., TOI , Whatsapp etc)

are displayed in the drawer.

Tap on the notifications

where the action needs to be

started

That particular notification

expands.

9

Examine the

permissions requested

by the app by going to

Settings > App Info.

Click on Settings
All the options under Settings

gets displayed.

Click on Apps
All the apps installed in the

device gets displayed.

Click on the particular app

whose permissions have to

be examined.

The permissions are displayed

Test Title : Standard design

1 App does not redefine Open an Application The Application is opened.

Department of Computer Science, Christ University

 Mobile Testing as a Service 74

the expected function of

a system icon (such as

the Back button).

Browse through different pages

in the app
The next page gets displayed

Press on the device's back button The previous page is displayed

Press on the device's Home

button

The device's Home page gets

displayed

Press on the back button defined

inside the app

Previous page of the app gets

displayed same as when the

device's Back button is pressed

Press on the Home button

defined inside the app

Home page gets displayed

same as when the device's

Home button is pressed

2

App does not replace a

system icon with a

completely different icon

if it triggers the standard

UI behavior.

Open an Application The Application is opened.

Browse through different pages

in the app
The next page gets displayed

Press on the device's back button The previous page is displayed

Press on the device's Home

button

The device's Home page gets

displayed

Press on the back button defined

inside the app which has the

same icon as the device's back

button

Previous page of the app gets

displayed same as when the

device's Back button is pressed

Press on the Home button

defined inside the app which has

the same icon as the device's

Home button

Home page gets displayed

same as when the device's

Home button is pressed

3 If the app provides a

customized version of a

standard system icon, the

icon strongly resembles

the system icon and

Open an Application The Application is opened.

Browse through different pages

in the app
The next page gets displayed

Press on the device's back button The previous page is displayed

Department of Computer Science, Christ University

 Mobile Testing as a Service 75

triggers the standard

system behavior.

Press on the device's Home

button

The device's Home page gets

displayed

Press on the back button defined

inside the app which has a

customized version of the

standard system icon

Previous page gets displayed

same as when the device's back

button is pressed(The

customized version of the icon

does not change the standard

system behavior)

Press on the Home button

defined inside the app which has

a customized version of the

standard system icon

Home page gets displayed

same as when the device's

Home button is pressed(The

customized version of the icon

does not change the standard

system behaviour).
If the Back button defined inside

the app has a different icon from

that of the device's Back button

icon

No changes / Previous page of

the app is not displayed

If the Home button defined

inside the app has a different

icon from that of the device's

Home button icon

No changes / Home page of the

app is not displayed

4

App does not redefine or

misuse Android UI

patterns, such that icons

or behaviors could be

misleading or confusing

to users.

If Home button's behaviour is

used in the Back button's icon

inside the app

That particular Back button

shouldn't function as per the

behaviour assigned to it

If Back button's behaviour is

used in the Home button's icon

inside the app

That particular Home button

shouldn't function as per the

behaviour assigned to it

Department of Computer Science, Christ University

 Mobile Testing as a Service 76

5.3 TEST REPORTS

Department of Computer Science, Christ University

 Mobile Testing as a Service 77

6.CONCLUSION

6.1 DESIGN AND IMPLEMENTATION ISSUES

The journey from strategy to implementation for mobile testing has many issues and

hurdles.Mobile application testing is both a critical and a complex component of mobile

application development. It is crucial to have a clearly defined and well-developed

mobile testing strategy and framework. The main components of a mobile application

testing strategy include usability; performance; security; and functional and non

functional testing across multiple platforms, devices and browsers.

A complete mobile testing strategy must also account for testing across differing network

connection speeds and geographical locations, as well as address the use of Wi-Fi, 3G or

4G connections. Testing must confront such issues as screen resolution and brightness,

CPU, memory and OS optimization. The mobile testing strategy must be geared to the

architecture of the applications under test whether they are Web, mobile Web, native

applications or hybrids. Finally, an organization must consider the test approach,

primarily the use of emulators versus actual devices, or even real user monitoring.

Emulation remains a strong candidate, at least for initial testing, with popular and largely

inexpensive emulators widely available for both iPhone and Android devices. However,

most emulators remain incomplete in important ways. Experienced testers looking for

accurate and repeatable results might not fully trust an emulator.

The journey to implement the strategy involves finding vendors to support a defined test

strategy which is very critical. Crowdsourcing, may be an option for certain types of ap-

plications. While crowdsourcing can provide a lot of data quickly, it may also create in-

correct initial impressions of the application's quality and utility.

Department of Computer Science, Christ University

http://searchsoftwarequality.techtarget.com/tip/Goals-and-options-for-mobile-real-user-monitoring
http://searchsoftwarequality.techtarget.com/tip/Testing-mobile-apps-Strategies-for-monitoring-and-user-emulation

 Mobile Testing as a Service 78

Implementation issue is mainly focussed on automation. Automation has to play a key

role in any enterprise testing strategy. Whether for tracking test case scripts and results,

collecting and analyzing real user data, or analyzing performance on the client device and

load on the server, the job is just too large for a manual approach.

Many application builders are still content with incomplete testing or even no testing, in

part because mobile testing is still in its infancy and can be difficult to do correctly. The

options and tradeoffs might seem to present insurmountable complexity. Inexperienced

project managers might be tempted to simply let customers and users provide primary

feedback on features and bugs.

6.2 ADVANTAGES AND LIMITATIONS

ADVANTAGES

 Automated Software Testing Saves Time and Money

Software tests have to be repeated often during development cycles to ensure quality.

Every time source code is modified software tests should be repeated. For each release of

the software it may be tested on all supported operating systems and hardware

configurations. Manually repeating these tests is costly and time consuming. Once

created, automated tests can be run over and over again at no additional cost and they are

much faster than manual tests. Automated software testing can reduce the time to run

repetitive tests from days to hours. A time savings that translates directly into cost

savings.

 Testing Improves Accuracy

Even the most conscientious tester will make mistakes during monotonous manual

testing. Automated tests perform the same steps precisely every time they are executed

and never forget to record detailed results.

Department of Computer Science, Christ University

http://searchsoftwarequality.techtarget.com/news/2240218857/QUEST-speakers-confirm-mobile-test-automation-vital-for-performance

 Mobile Testing as a Service 79

 Increase Test Coverage

Automated software testing can increase the depth and scope of tests to help improve

software quality. Lengthy tests that are often avoided during manual testing can be run

unattended. They can even be run on multiple computers with different configurations.

Automated software testing can look inside an application and see memory contents, data

tables, file contents, and internal program states to determine if the product is behaving as

expected. Automated software tests can easily execute thousands of different complex

test cases during every test run providing coverage that is impossible with manual tests.

Testers freed from repetitive manual tests have more time to create new automated

software tests and deal with complex features.

 Automation Does What Manual Testing Cannot

Even the largest software departments cannot perform a controlled web application test

with thousands of users. Automated testing can simulate tens, hundreds or thousands of

virtual users interacting with network or web software and applications.

 Automated QA Testing Helps Developers and Testers

Shared automated tests can be used by developers to catch problems quickly before

sending to QA. Tests can run automatically whenever source code changes are checked in

and notify the team or the developer if they fail. Features like these save developers time

and increase their confidence.

Limitations

 Proficiency is required to write the mobile automation test scripts.

 Debugging the mobile app specific test script is major issue. If any error is present

in the test script, sometimes it may lead to deadly consequences.

 Test maintenance is costly in case of playback methods. Even though a minor

change occurs in the GUI of any mobile platform, the test script has to be rere-

corded or replaced by a new test script.

Department of Computer Science, Christ University

 Mobile Testing as a Service 80

 Maintenance of test data files is difficult, if the test script tests more screens.

 Since the main function of the mobile testing framework is automation, testing is

usually done at unit testing level. Automation testing requires some code to be

written which when executed, automatically tests certain unit of code

 However, in case of system and integration testing, automation testing tools usu-

ally don’t have the ability to integrate test cases and output the result of complete

system testing and they are limited to unit testing only.

 Last but not the least, robust and reliable automated testing tools are not available

freely in the market. Most of the free tools available in the market at the moment

are not efficient enough to provide the latest mobile automated testing features.

 Another limitation of mobile automation testing is that automated test cases are

not run on single machine of a developer or tester. To obtain correct results test

case needs to be executed on some central repository where it can access all the

parts of application developed by different developers.

 The Real live interactions cannot be performed with emulator alone .It is not pos-

sible to test the applications on a live network connectivity.

 Emulator just mimics the mobile device from various platforms and hence testing

on the emulator cannot guarantee the stability of the application.

 Some of the interruption test scenarios may also not work properly as like in real

handset to predict the actual behavior of the application.

Department of Computer Science, Christ University

 Mobile Testing as a Service 81

6.3 FUTURE ENHANCEMENTS

 The current project scenario deals with testing of apps on an android emulator.

One of the most important enhancement is to expand the framework to work on

other platforms like apple and windows.

 The testing strategies can be expanded to be compatible with screen resolution of

a tablet mobile screen according to the latest market trend.

 The testing strategies can have gestures specific module added along with various

other characteristics of a mobile application.

Department of Computer Science, Christ University

 Mobile Testing as a Service 82

REFERENCES

Department of Computer Science, Christ University

	
	1. INTRODUCTION
	1.1 PROBLEM DESCRIPTION
	1.2 EXISTING SYSTEM
	1.3 PROJECT SCOPE
	2.1 FUNCTIONAL SPECIFICATIONS
	2.1.1 NON-FUNCTIONAL SPECIFICATIONS
	2.2 BLOCK DIAGRAM
	2.3 SYSTEM REQUIREMENTS
	2.3.1 HARDWARE REQUIREMENTS
	2.3.2 SOFTWARE REQUIREMENTS
	2.3.3 TOOL SURVEY

	3.1 SYSTEM ARCHITECTURE
	3.2 MODULE DESIGN
	3.3 DATABASE DESIGN
	3.3.1 DATA FLOW DIAGRAM
	
	Fig 3.3.2.1 Data Flow Diagram
	3.4 INTERFACE DESIGN
	3.4.1 USER INTERFACE SCREEN DESIGN

	4. IMPLEMENTATION
	4.1 CODING STANDARD
	Interface
	4.2 SCREEN SHOTS

	5. TESTING
	5.1 TYPES OF TESTING METHODOLOGIES
	5.1.1 UNIT TESTING
	5.1.2 INTEGRATION TESTING
	5.1.3 SYSTEM TESTING
	5.1.4 VALIDATION TESTING
	5.1.5 VERIFICATION TESTING

	5.2 TEST CASES
	5.3 TEST REPORTS

	6.CONCLUSION
	6.1 DESIGN AND IMPLEMENTATION ISSUES
	6.2 ADVANTAGES AND LIMITATIONS
	6.3 FUTURE ENHANCEMENTS

	REFERENCES

